Reviewed By:
Benjamin Kummer, MD (Neurology)
Dr Kummer is Assistant Professor of Neurology at the Icahn School of Medicine at Mount Sinai (ISMMS), with joint appointment in Digital and Technology Partners (DTP) at the Mount Sinai Health System (MSHS) as Director of Clinical Informatics in Neurology. As a triple-board certified practicing stroke neurologist and informaticist, he has successfully improved clinical operations at the point of care by acting as a central liaison between clinical neurology faculty and DTP teams to implement targeted EHR configuration changes and workflows, as well as providing subject matter expertise on health information technology projects across MSHS. | Dr Kummer also has several years’ experience building and implementing several informatics tools, presenting scientific posters, and generating a body of peer-reviewed work in “clinical neuro-informatics” – i.e., the intersection of clinical neurology, digital health, and informatics – much of which is centered on digital/tele-health, artificial intelligence, and machine learning. He has spearheaded the Clinical Neuro-Informatics Center in the Department of Neurology at ISMMS, a new research institute that seeks to establish the field of clinical neuro-informatics and disseminate knowledge to the neurological community on the effects and benefits of clinical informatics tools at the point of care.
Shohei Harase, MD (Neurology)
Dr. Harase spent his junior and senior high school years in Finland and the U.S. After graduating from the University of Washington (Bachelor of Science, Molecular and Cellular Biology), he worked for Apple Japan Inc. before entering the University of the Ryukyus School of Medicine. He completed his residency at Okinawa Prefectural Chubu Hospital, where he received the Best Resident Award in 2016 and 2017. In 2021, he joined the Department of Cerebrovascular Medicine at the National Cerebral and Cardiovascular Center, specializing in hyperacute stroke.
Content updated on Nov 7, 2023
Following the Medical Content Editorial Policy
Worried about your symptoms?
Start the test with our free AI Symptom Checker.
This will help us personalize your assessment.
By starting the symptom checker, you agree to the Privacy Policy and Terms of Use
Try one of these related symptoms.
Shaky hands
Hand tremors
Shivering body
Tremor of my fingers
Finger twitching
Tremor of the limbs
Fingertips tremble
Finger tremor
Fingers and body shivering
With a free 3-min quiz, powered by Ubie's AI and doctors, find possible causes of your symptoms.
This questionnaire is customized to your situation and symptoms, including the following personal information:
Biological Sex - helps us provide relevant suggestions for male vs. female conditions.
Age - adjusts our guidance based on any age-related health factors.
History - considers past illnesses, surgeries, family history, and lifestyle choices.
Your symptoms
Our AI
Your report
Your personal report will tell you
✔ When to see a doctor
✔︎ What causes your symptoms
✔︎ Treatment information etc.
Tremor is a type of shaking movement in one or more parts of the fingers or other places in the body. These movements are usually involuntary and can be brought about by different things such as rest, action, or approaching a target with a hand or leg.
Seek professional care if you experience any of the following symptoms
Generally, Trembling of fingers or whole body can be related to:
A progressive nervous system disorder affecting movement. It occurs due to nerve cell damage in the brain. The exact cause for PD is unknown. Risk factors include genetics, male gender, old age, and exposure to certain toxins and environmental factors.
Shuddering Attacks
Olive bridge cerebellar atrophy, also known as Olivopontocerebellar atrophy, is the degeneration of neurons in specific areas of the brain like the cerebellum, pons, and inferior olivary nucleus. It is a hereditary condition.
Sometimes, Trembling of fingers or whole body may be related to these serious diseases:
Epilepsy is a neurological disorder where brain activity becomes abnormal, causing seizures of varying durations and severities. It can affect people of any age and may be caused by genetic disorders or brain injuries, such as stroke.
Your doctor may ask these questions to check for this symptom:
Haq IU, Liebenow B, Okun MS. Clinical overview of movement disorders. In: Winn HR, ed. Youmans and Winn Neurological Surgery. 8th ed. Philadelphia, PA: Elsevier; 2023:chap 105.
Jankovic J, Lang AE. Diagnosis and assessment of Parkinson disease and other movement disorders. In: Jankovic J, Mazziotta JC, Pomeroy SL, Newman NJ, eds. Bradley and Daroff's Neurology in Clinical Practice. 8th ed. Philadelphia, PA: Elsevier; 2022:chap 24.
Fasano A, Deuschl G. Therapeutic advances in tremor. Mov Disord. 2015;30:1557-1565. PMID: 26293405
https://movementdisorders.onlinelibrary.wiley.com/doi/10.1002/mds.26383Reviewed By:
Benjamin Kummer, MD (Neurology)
Dr Kummer is Assistant Professor of Neurology at the Icahn School of Medicine at Mount Sinai (ISMMS), with joint appointment in Digital and Technology Partners (DTP) at the Mount Sinai Health System (MSHS) as Director of Clinical Informatics in Neurology. As a triple-board certified practicing stroke neurologist and informaticist, he has successfully improved clinical operations at the point of care by acting as a central liaison between clinical neurology faculty and DTP teams to implement targeted EHR configuration changes and workflows, as well as providing subject matter expertise on health information technology projects across MSHS. | Dr Kummer also has several years’ experience building and implementing several informatics tools, presenting scientific posters, and generating a body of peer-reviewed work in “clinical neuro-informatics” – i.e., the intersection of clinical neurology, digital health, and informatics – much of which is centered on digital/tele-health, artificial intelligence, and machine learning. He has spearheaded the Clinical Neuro-Informatics Center in the Department of Neurology at ISMMS, a new research institute that seeks to establish the field of clinical neuro-informatics and disseminate knowledge to the neurological community on the effects and benefits of clinical informatics tools at the point of care.
Shohei Harase, MD (Neurology)
Dr. Harase spent his junior and senior high school years in Finland and the U.S. After graduating from the University of Washington (Bachelor of Science, Molecular and Cellular Biology), he worked for Apple Japan Inc. before entering the University of the Ryukyus School of Medicine. He completed his residency at Okinawa Prefectural Chubu Hospital, where he received the Best Resident Award in 2016 and 2017. In 2021, he joined the Department of Cerebrovascular Medicine at the National Cerebral and Cardiovascular Center, specializing in hyperacute stroke.
Male, 30s
I got more answers in one minute through your site than I did in three hours with Google.
(Sep 29, 2024)
Male, 20s
My experience was great. I was worried, but the symptom checker helped me narrow down what it might be. I feel a little relieved compared to when I first started, and it gives me a starting point for what my symptoms could mean.
(Sep 27, 2024)
Male, 50s
The questions asked and possible causes seemed spot on, putting me at ease for a next-step solution.
(Sep 26, 2024)
Female, 40s
I was actually very impressed with the results it provided because, although I didn’t mention it during the questionnaire because I thought it was unrelated, it suggested I may have something I’ve actually been diagnosed with in the past.
(Sep 25, 2024)
Our symptom checker AI is continuously refined with input from experienced physicians, empowering them to make more accurate diagnoses.
“World’s Best Digital
Health Companies”
Newsweek 2024
“Best With AI”
Google Play Best of 2023
“Best in Class”
Digital Health Awards 2023 (Quarterfinalist)
Which is the best Symptom Checker?
Ubie’s symptom checker demonstrated a Top-10 hit accuracy of 71.6%, surpassing the performance of several leading symptom checkers in the market, which averaged around 60% accuracy in similar assessments.
Link to full study:
https://www.medrxiv.org/content/10.1101/2024.08.29.24312810v1